First Welfare Theorem

Econ 3030

Fall 2025

Lecture 20

Outline

- First Welfare Theorem
- Preliminaries to Second Welfare Theorem

Past Definitions

A feasible allocation $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ is Pareto optimal if there is no other feasible allocation (x, y) such that $\mathbf{x}_i \succsim_i \hat{\mathbf{x}}_i$ for all i and $\mathbf{x}_i \succ_i \hat{\mathbf{x}}_i$ for some i.

An allocation $(\mathbf{x}^*, \mathbf{y}^*)$ and a price vector $\mathbf{p}^* \in \mathbb{R}_+^L$ form a competitive equilibrium if

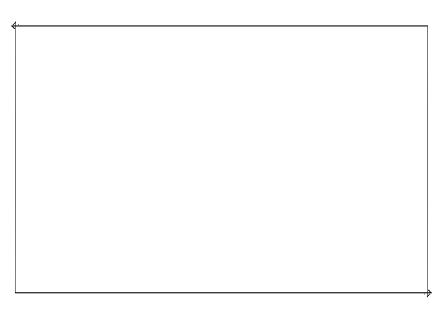
- of for i = 1, ..., I: $\mathbf{x}_i^* \succsim_i \mathbf{x}_i$ for all $\mathbf{x}_i \in \{\mathbf{x}_i \in X_i : \mathbf{p}^* \cdot \mathbf{x}_i \le \mathbf{p}^* \cdot \boldsymbol{\omega}_i + \sum_j \theta_{ij} (\mathbf{p}^* \cdot \mathbf{y}_j^*)\}$

Relationship between competitive equilibrium and Pareto efficiency

- Is any competitive equilibirum Pareto efficient? First Welfare Theorem.
 - This is about ruling out allocations that can Pareto dominate the equilibrium allocation.
- Is any Pareto efficient allocation (part of) a competitive equilibrium? Second Welfare Theorem.
 - This is about finding prices that make the efficient allocation an equilibirum.

First Welfare Theorem: Edgeworth Box

Things seem easy



First Welfare Theorem: Representative Agent Things seem easy

First Welfare Theorem: Counterexample

An Edgeworth Box Economy: two-person, two-good exchange economy

• Consumers a and b utility functions are

$$U_a(x_{1a}, x_{2a}) = 7$$
 and $U_b(x_{1b}, x_{2b}) = x_{1b}x_{2b}$

while the initial endowments are $\omega_a=(2,0)$ and $\omega_b=(0,2)$

- CLAIM: $\mathbf{x}_a^* = (1, 1)$, $\mathbf{x}_b^* = (1, 1)$, and $\mathbf{p}^* = (1, 1)$ form a competitive equilibirum.
 - a's utility is maximized at x_a*.
 - b's utility when her income equals 2 is maximized at \mathbf{x}_b^* (this is a Cobb-Douglas utility function with equal exponents, so spending half her income on each good is optimal).
 - $\mathbf{x}_a^* + \mathbf{x}_b^* = (2,2) = \omega_a + \omega_b$ so demand equals supply.
- Is this allocation Pareto optimal? No:
 - $\mathbf{\hat{x}}_a = (0,0)$ and $\mathbf{\hat{x}}_b = (2,2)$ Pareto dominates \mathbf{x}_a^* , \mathbf{x}_b^* since consumer a has the same utility while consumer b's utility is higher.
- How do we rule examples like this out?
- Need consumers preferences to be locally non satiated (there is always something nearby that makes the consumer better off).

Local Non Satiation

Definition

A preference ordering \succeq_i on X_i is satiated at \mathbf{y} if there exists no \mathbf{x} in X_i such that $\mathbf{x} \succ_i \mathbf{y}$.

Definition

The preference relation \succeq_i on X_i is locally non-satiated if for every \mathbf{x} in X_i and for every $\varepsilon > 0$ there exists an \mathbf{x}' in X_i such that $\|\mathbf{x}' - \mathbf{x}\| < \varepsilon$ and $\mathbf{x}' \succ_i \mathbf{x}$.

• Remember: $\|\mathbf{y} - \mathbf{z}\| = \sqrt{\sum_{l=1}^{L} (y_l - z_l)^2}$ is the Euclidean distance between two points.

Remark

If \succeq_i is continuous and locally non-satiated it is represented by a locally non-satiated utility function; then, any closed consumption set must be unbounded (or there would be a global satiation point).

Local Non Satiation and Walrasian Demand

Lemma

Suppose \succeq_i is locally non-satiated, and let x_i^* be defined as:

$$\mathbf{x}_{i}^{*} \succsim_{i} \mathbf{x}_{i}$$
 for all $\mathbf{x}_{i} \in \{\mathbf{x}_{i} \in X_{i} : \mathbf{p} \cdot \mathbf{x}_{i} \leq w_{i}\}$.

Then

$$\mathbf{x}_i \succsim_i \mathbf{x}_i^*$$
 implies $\mathbf{p} \cdot \mathbf{x}_i \ge w_i$

and

$$\mathbf{x}_i \succ_i \mathbf{x}_i^*$$
 implies $\mathbf{p} \cdot \mathbf{x}_i > w_i$

- If a consumption vector is weakly preferred to a maximal consumption bundle (i.e. an element of the Walrasian demand correspondence), it cannot cost strictly less.
- If a consumption vector is strictly preferred to a maximal bundle, it must not be affordable
 - If not the consumer would have chosen it and been better-off.
- The formal proof is for the Problem Set. (HINT: Draw a picture before starting the proof).

First Welfare Theorem

Theorem (First Fundamental Theorem of Welfare Economics)

Suppose each consumer's preferences are locally non-satiated. If $\mathbf{x}^*, \mathbf{y}^*$ and prices \mathbf{p}^* form a competitive equilibrium, then $\mathbf{x}^*, \mathbf{y}^*$ is Pareto optimal.

- Equilibrium prices plus individuals' maximization yield a Pareto efficient allocation.
 - The planner cannot improve an equilibrium allocation.
- The theorem makes mild assumptions on individuals' preference relations.
- Local non-satiation has bite: there is always a more desirable commodity bundle nearby.
- There is another assumption implicit in our framework: lack of externalities (more later).

Proof of the First Welfare Theorem

By contradiction:

Suppose not: there exists a feasible allocation \mathbf{x} , \mathbf{y} such such that $\mathbf{x}_i \succsim_i \mathbf{x}_i^*$ for all i, and $\mathbf{x}_i \succ_i \mathbf{x}_i^*$ for some i.

- By local non satiation, $\mathbf{x}_i \succsim_i \mathbf{x}_i^*$ implies $\mathbf{p}^* \cdot \mathbf{x}_i \ge \mathbf{p}^* \cdot \boldsymbol{\omega}_i + \sum_j \theta_{ij}(\mathbf{p}^* \cdot \mathbf{y}_j^*)$ $\mathbf{x}_i \succ_i \mathbf{x}_i^*$ implies $\mathbf{p}^* \cdot \mathbf{x}_i > \mathbf{p}^* \cdot \boldsymbol{\omega}_i + \sum_j \theta_{ij}(\mathbf{p}^* \cdot \mathbf{y}_j^*)$
- Therefore, summing over consumers

$$\sum_{i=1}^{I} \mathbf{p}^* \cdot \mathbf{x}_i > \sum_{i=1}^{I} \mathbf{p}^* \cdot \boldsymbol{\omega}_i + \sum_{i=1}^{I} \sum_{j=1}^{J} \theta_{ij} (\mathbf{p}^* \cdot \mathbf{y}_j^*) \stackrel{accounting}{=} \sum_{i=1}^{I} \mathbf{p}^* \cdot \boldsymbol{\omega}_i + \sum_{j=1}^{J} \mathbf{p}^* \cdot \mathbf{y}_j^*$$

- Since each \mathbf{y}_j^* maximizes profits at prices \mathbf{p}^* , we also have $\sum_{j=1}^J \mathbf{p}^* \cdot \mathbf{y}_j^* \ge \sum_{j=1}^J \mathbf{p}^* \cdot \mathbf{y}_j$
- Substituting this into the previous inequality:

$$\sum_{i=1}^{I} \mathbf{p}^* \cdot \mathbf{x}_i > \sum_{i=1}^{I} \mathbf{p}^* \cdot oldsymbol{\omega}_i + \sum_{j=1}^{J} \mathbf{p}^* \cdot \mathbf{y}_j$$

Proof of the First Welfare Theorem (continued)

We have shown that

$$\sum_{i=1}^{r} \mathbf{p}^* \cdot \mathbf{x}_i > \sum_{i=1}^{r} \mathbf{p}^* \cdot \boldsymbol{\omega}_i + \sum_{i=1}^{s} \mathbf{p}^* \cdot \mathbf{y}_i$$

This contradicts feasibility of (x, y) because

$$\sum_{i=1}^{I} x_{li} \leq \sum_{i=1}^{I} \omega_{li} + \sum_{j=1}^{J} y_{lj} \qquad \Rightarrow \qquad \sum_{i=1}^{I} p_{l}^{*} x_{li} \leq \sum_{i=1}^{I} p_{l}^{*} \omega_{li} + \sum_{j=1}^{J} p_{l}^{*} y_{lj}$$

Summing over goods:

$$\sum_{l=1}^{L} \sum_{i=1}^{I} p_{l}^{*} x_{li} \leq \sum_{l=1}^{L} \sum_{i=1}^{I} p_{l}^{*} \omega_{li} + \sum_{l=1}^{L} \sum_{j=1}^{J} p_{l}^{*} y_{lj}$$

which implies $\sum_{i=1}^{J} \mathbf{p}^* \cdot \mathbf{x}_i \leq \sum_{i=1}^{J} \mathbf{p}^* \cdot \boldsymbol{\omega}_i + \sum_{i=1}^{J} \mathbf{p}^* \cdot \mathbf{y}_j$

First Welfare Theorem

Theorem (First Fundamental Theorem of Welfare Economics)

Suppose each consumer's preferences are locally non-satiated. If x^*, y^* and prices p^* form a competitive equilibrium, then x^*, y^* is Pareto optimal.

 The theorem says that as far as Pareto optimality goes the social planner cannot improve upon a competitive equilibrium.

Remark

The theorem needs only a seemingly weak assumption to obtain a pretty strong conclusion.

- On the other hand, the important assumption of absence of externalities is implicit in the way we set up the theory.
- An externality is present when preferences or profit depend on more than one's own choices.

Externalities: An Example

An Edgeworth Box Economy (two goods and two consumers)

- Consumer B: $u_B(x_{1B}, x_{2B}) = x_{1B}x_{2B}$ and $\omega_B = (0, 2)$.
- Consumer A: $u_A(x_{1A}, x_{2A}, x_{1B}) = x_{1A}x_{2A} x_{1B}$ and $\omega_A = (2, 0)$.
 - A suffers from B's consumption of the first good.
- CLAIM: $\mathbf{x}_A^* = (1,1)$, $\mathbf{x}_B^* = (1,1)$, and $\mathbf{p}^* = (1,1)$ form a competitive equilibirum.
 - Since A cannot choose x_{1B}, this is a constant in her utility function. Thus, A's utility is maximized by x₄ at prices p* (this is a Cobb-Douglas utility function with equal exponents, so
 - spending half income on each good is optimal).

 B's utility when her income equals 2 is maximized (this is a Cobb-Douglas utility function with equal exponents, so spending half her income on each good is optimal).

 $\mathbf{x}_A^* + \mathbf{x}_B^* = (2,2) = \omega_A + \omega_B$.
- Is $(\mathbf{x}_A^*, \mathbf{x}_B^*)$ Pareto optimal? No: $(\mathbf{\hat{x}}_A, \mathbf{\hat{x}}_B) = ((\frac{5}{4}, \frac{2}{3}), (\frac{3}{4}, \frac{4}{3}))$ is a feasible Pareto

improvement:

$$U_A(\hat{x}_{1A}, \hat{x}_{2A}, \hat{x}_{1B}) = \frac{5}{4} \frac{2}{3} - \frac{3}{4} = \frac{1}{12} > U_A(x_{1A}^*, x_{2A}^*, x_{1B}^*) = 1 - 1 = 0$$

 $U_B(\hat{x}_{1B}, \hat{x}_{2B}) = \frac{3}{4} \frac{4}{3} = 1 = U_B(x_{1B}^*, x_{2B}^*)$

First Welfare Theorem: Externalities

- In the previous example, the first welfare theorem fails because A's utility depends on B's consumption.
- That is an example of a (negative) consumption externality: the more B consumes of the good, the worse-off A becomes.
- There can be also externalities in production.
- Externalities can also be positive.

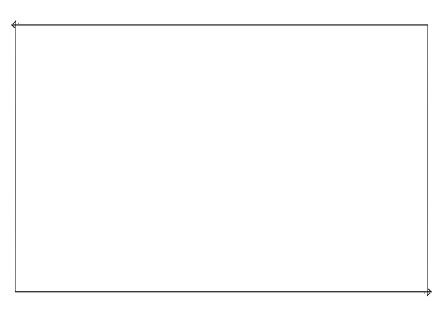
Remark

Among the assumptions implicit in our definition of preferences and production possibility sets, one is crucial for the first welfare theorem: there are no externalities in consumption or production.

Second Welfare Theorem: Preliminaries

- Next, we focus on a converse to the First Welfare Theorem.
- The statement will go something like this: under some conditions, any Pareto optimal allocation is part of a competitive equilibrium.
 - Today, we try to understand what these conditions must be. We will state and prove the theorem next class.
- Since an equilibrium must specify an allocation and prices, in order to prove that a
 Pareto optimal allocation is part of an equilibrium one needs to find the price vector
 that 'works' for that allocation.
- First, we see an obvious sense in which this cannot be done: Pareto optimality disregards the budget constraints.
 - This is fixed by appropriately adjusting the definition of equilibrium.
- Then, we see two counterexamples that stress the need for convexities.
 - These are fixed by assuming production sets and better-than sets are convex.
- Finally, we see an example showing that boundary issues can pose problems.
 - This is fixed by, again, adjusting the definition of equilibrium.

Second Welfare Theorem: Need Transfers Example



Equilibrium With Transfers

Definition

Given an economy $(\{X_i, \succeq_i, \omega_i\}_{i=1}^I, \{Y_j\}_{j=1}^J)$, an allocation x^*, y^* and a price vector p^* constitute a price equilibrium with transfers if there exists a vector of wealth levels

$$\mathbf{w} = (w_1, w_2, ..., w_I)$$
 with $\sum_{i=1}^{I} w_i = \sum_{i=1}^{I} \mathbf{p}^* \cdot \boldsymbol{\omega}_i + \sum_{j=1}^{J} \mathbf{p}^* \cdot \mathbf{y}_j^*$

such that:

② For each i = 1, I:

• For each
$$j = 1, ..., J$$
: $\mathbf{p}^* \cdot \mathbf{y}_j \leq \mathbf{p}^* \cdot \mathbf{y}_j^*$ for all $y_j \in Y_j$

- $\mathbf{x}_{i}^{*} \succeq_{i} \mathbf{x}_{i}$ for all $\mathbf{x}_{i} \in \{\mathbf{x}_{i} \in X_{i} : \mathbf{p}^{*} \cdot \mathbf{x}_{i} \leq w_{i}\}$
- $\sum_{i=1}^{I} x_{li}^* \leq \sum_{i=1}^{I} \omega_{li} + \sum_{i=1}^{J} y_{lj}^*, \text{ and } p_l = 0 \text{ if strict inequality}$ **3** For each l = 1, ..., L:
- Aggregate wealth is divided so that the consumers' budget constraints are satisfied.
- How is each consumer effected? They get a positive or negative transfer.
- A competitive equilibrium satisfies this: let $w_i = \mathbf{p}^* \cdot \boldsymbol{\omega}_i + \sum_{i=1}^J \theta_{ij} (\mathbf{p}^* \cdot \mathbf{y}_i^*)$.

Equilibrium With Transfers

Remark

The income transfers (across consumers) that achieve the budget levels in the previous definition are:

$$T_i = w_i - \left[\mathbf{p}^* \cdot \boldsymbol{\omega}_i + \sum_{j=1}^J \theta_{ij} \left(\mathbf{p}^* \cdot \mathbf{y}_j^* \right) \right]$$

Summing over consumers, we get

$$\sum_{i=1}^{I} T_{i} = \sum_{i=1}^{I} w_{i} - \left[\sum_{i=1}^{I} \mathbf{p}^{*} \cdot \boldsymbol{\omega}_{i} + \sum_{i=1}^{I} \sum_{j=1}^{J} \theta_{ij} \left(\mathbf{p}^{*} \cdot \mathbf{y}_{j}^{*} \right) \right]$$

$$= \sum_{i=1}^{I} w_{i} - \left[\sum_{i=1}^{I} \mathbf{p}^{*} \cdot \boldsymbol{\omega}_{i} + \sum_{j=1}^{J} \mathbf{p}^{*} \cdot \mathbf{y}_{j}^{*} \right]$$

$$= 0$$

• Transfers redistribute income so that the 'aggregate budget' balances.

Next Class

• Proof of the Second Fundamental Theorem of Welfare Economics.